RedOx Chemistry

with

Dr. Nick

What is **RedOx** Chemistry?

- The defining characteristic of a RedOx reaction is that electron(s) have completely moved from one atom / molecule to another.
- The molecule receiving the electrons has been Reduced
- The molecule giving the electrons has been Oxidized

What is **RedOx** Chemistry?

OIL RIG

Oxidation is Losing Reduction is Gaining (electrons)

LEO says GER

Losing Electron Oxidation Gaining Electron Reduction

Table 5.2 Selected standard potentials at 298 K; further valuesare included in *Resource section* 3

Couple	E∻/V
$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	+2.87
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+ 1.76
$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O(I)$	+ 1.51
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(I)$	+1.23
$[IrCl_6]^{2-}(aq) + e^- \rightarrow [IrCl_6]^{3-}(aq)$	+0.87
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$[PtCl_4]^{2-}(aq) + 2e^- \rightarrow Pt(s) + 4Cl^-(aq)$	+0.60
$I_3^-(aq) + 2e^- \rightarrow 3 I^-(aq)$	+0.54
$[Fe(CN)_6]^{3-}(aq) + e^- \rightarrow [Fe(CN)_6]^{4-}(aq)$	+0.36
$AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$	+0.22
$2 H^+(aq) + 2 e^- \rightarrow H_2(g)$	0
$Agl(s) + e^- \rightarrow Ag(s) + l^-(aq)$	-0.15
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$Al^{3+}(aq) + 3e^- \rightarrow Al(s)$	-1.68
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.84
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

© 2009 W.H. Freeman

The Standard Potential E[°]

- The standard potential (E°) is a convenient metric for determining the relative strength of RedOx reactions at 1 M concentrations.
- Think of E° as, "How <u>easily</u> a reaction will happen."
- Very positive means very easy, very negative means very difficult.
- You can <u>change the sign</u> of E° by <u>reversing the</u> <u>reaction</u>.

Discussion Question 1:

Given the half reactions, what is the balanced, spontaneous redox reaction with the appropriate E°? (assume standard conditions)

Couple	<i>E</i>
$I_3^-(aq) + 2e^- \rightarrow 3 I^-(aq)$	+0.54
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76

Standard Reduction Potentials at 25°C (298 K) for Many Common Half-reactions

Half-reaction	C° (V)	Half-reaction	$\mathfrak{C} (V)$
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^- \rightarrow Cu$	0.34
$Co^{3+} + e^- \rightarrow Co^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78	$AgCl + e^- \rightarrow Ag + Cl^-$	0.22
$Ce^{4+} + e^- \rightarrow Ce^{3+}$	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^- \rightarrow Cu^+$	0.16
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00
$IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$	1.60	$Fe^{3+} + 3e^- \rightarrow Fe$	-0.036
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
$Au^{3+} + 3e^- \rightarrow Au$	1.50	$\operatorname{Sn}^{2+}_{-} + 2e^{-} \rightarrow \operatorname{Sn}_{-}$	-0.14
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33	$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^- \rightarrow Al$	-1.66
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$2\text{Hg}^{2+} + 2e^- \rightarrow \text{Hg}_2^{2+}$	0.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37
$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^- \rightarrow La$	-2.37
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^- \rightarrow Ca$	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	0.56	$K^+ + e^- \rightarrow K$	-2.92
$I_2 + 2e^- \rightarrow 2I^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05
$Cu^+ + e^- \rightarrow Cu$	0.52		

Combining Oxygen Half-Reactions

- I. Write the half-reactions, including E°
- **II**. Check if the two are a RedOx pair. If not, reverse the more negative half reaction.
- **III**. For each half reaction, balance elements other than oxygen and hydrogen using coefficients.
- IV. Balance oxygen by adding H_2Os to <u>one</u> side.
- V. Balance hydrogen by adding H⁺s to <u>one</u> side.

Combining Half-Reactions

VI. IF THE SOLUTION IS BASIC, neutralize all H^+ by adding OH^- to <u>both</u> sides.

VII. Balance charges of each by adding e⁻.

VIII. Multiply the half reactions to balance the electrons (e⁻).

IX. Add half reactions and E°, cancel terms.

X. Final check: make sure all atoms and charges balance!

$$\delta_{\xi} + 8H^{4} + 2MnO_{y} + 3Mg^{9} \rightarrow 2MnO_{2} + 4H_{2}O + 3Mg^{24} + \delta_{\xi} - F = 4.05V$$

Group Question 2:

Given the reduction half reactions, what is the balanced, spontaneous redox reaction and E° in <u>basic</u> solution?

$$MnO_4^- \longrightarrow MnO_2$$
 $E^\circ = +1.68 V$

$$Cr_2O_7^{2-} \longrightarrow Cr^{3+} \qquad E^\circ = +1.33 V$$

W. H.

	Li	Na	Cs	Ag
$\Delta_{sub}H^{-}/(kJ mol^{-1})$	+161	+109	+79	+284
//(kJ mol ^{−1})	526	502	382	735
$\Delta_{hyd}H^{-}/(kJ mol^{-1})$	-520	-406	-264	-468
$\Delta_{f}H^{-}(M^{+},aq)/(kJ mol^{-1})$	+167	+206	+197	+551
$\Delta_r H^{-}/(kJ \text{ mol}^{-1})$	+278	+240	+248	-106
$T\Delta_r S^{\oplus}/(kJ \text{ mol}^{-1})$	-16	-22	-34	-29
$\Delta_r G^{-}$ /(kJ mol ⁻¹)	+294	+262	+282	-77
E [⊕] /V	-3.04	-2.71	-2.92	+0.80
$\Delta_{f}H^{-}(H^{+},aq) = +455$ kJ mol ⁻¹ .				

Table 5.1 Thermodynamic contributions to E^{\Rightarrow} for a selection of metals at 298 K

W. H.

Inorganic Chemistry Chapter 5: Figure 5.1

 $E^{\circ} = 0.00$

A zinc/acid battery

Daniell Cell. Copper Deposition/Zinc Dissolution

Fun with Equations!

$$\Delta G^{\circ} = -nFE^{\circ}$$

- ΔG: Gibb's free energy. Negative values are more thermodynamically favorable
- n: Represented in the book as v, is the coefficient in front of the <u>electrons</u> for the balanced <u>RedOx</u> reaction.
- F: Faraday's constant, 96,480 J/mol•V or C/mol.
- E°: Standard potential of the reaction. What we've been working with this whole time!

Fun with Equations!

 $\Delta G^{\circ} = -nFE^{\circ} \qquad \begin{array}{cc} 2H^{+} + 2e^{-} \longrightarrow H_{2} & E^{\circ} = 0.00 \\ Zn \longrightarrow Zn^{+2} + 2e^{-} & E^{\circ} = +0.76 \end{array}$

 $Zn + 2H^+ + 2e^- \longrightarrow Zn^{+2} + H_2 + 2e^- E_{cell}^\circ = +0.76 V$ $\Delta G^\circ = -(2)(96,480 \text{ J/mol} \cdot \text{V})(0.76 \text{ V})$

 $\Delta G^{\circ} = -150 \text{ kJ/mol}$

- The NERNST equation allows you to calculate the potential of a cell at <u>non-standard</u> conditions.
- R: Ideal Gas Constant, use 8.314 J/mol•K for these calculations.
- Q: Reaction Quotient, concentrations of products over reactants.

 $aA + bB \longrightarrow cC + dD$

 $Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

Fun with Equations!

$$E_{cell} = E^{\circ}_{cell} - \frac{RT}{nF} \ln Q$$

$$Zn_{(s)} + Sn^{+2}_{(aq)} + 2e^{-} \longrightarrow Zn^{+2}_{(aq)} + Sn_{(s)} + 2e^{-} \qquad E^{\circ}_{cell} = + 0.62 \text{ V}$$

$$Q = \frac{0.5 \text{ M}}{0.1 \text{ M}}$$

$$E_{cell} = (0.62 \text{ V}) - \frac{(8.314 \text{ J/mol} \cdot \text{K})(298 \text{ K})}{2(96,480 \text{ J/mol} \cdot \text{V})} \quad \ln \frac{0.5 \text{ M}}{0.1 \text{ M}}$$

 $E_{cell} = 0.60 V$

- A shorthand of the NERNST equation that condenses the constants into a single value.
- This assumes a 298 K (25 °C) temperature!
- The logarithm is now <u>base 10</u>, not natural log!

Fun with Equations!

$$\ln K = \frac{nFE^{\circ}_{cell}}{RT}$$

- If you know the standard potential of the cell, you can calculate the equilibrium constant by rearranging the NERNST equation.
- Measuring the potential of a battery is one way of determining the ratio of products to reactants.

Group Question 3:

What is the cell potential for a galvanic cell composed of copper and iron at 0.140 M Cu²⁺, 0.677 M Fe²⁺, and 78 °C?

Half-Reaction	Standard Reduction Potential (V)
$Zn^{2+} + 2 e^- \rightarrow Zn$	-0.763
$\mathrm{Fe}^{2+} + 2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}$	-0.44
$2 \mathrm{H^{+}} + 2 \mathrm{e^{-}} \rightarrow \mathrm{H_{2}}$	0.000
$Cu^{2+} + 2 e^{-} \rightarrow Cu$	+0.337

$$E = E^{\circ} - \frac{RT}{nF} \ln Q$$

F = 96,485 J/V•mol R = 8.314 J/mol•K

Disproportionation!

 $2A \longrightarrow A^+ + A^-$

- Disproportionation reactions occur when two <u>identical</u> molecules react to donate / accept electron(s).
- These reactions, like all RedOx reactions, can be broken down into half reactions and examined for spontaneity.

SPONTANEOUS!!!

 $E^{\circ} = +0.36 V$

$$2Cu^+ \longrightarrow Cu^{+2} + Cu_{(s)}$$

Disproportionation!

Comproportionation!

$A^+ + A^- \longrightarrow 2A$

 Simply the reverse reaction of disproportionation, these occur when two different molecules donate / accept electron(s) to form two <u>identical</u> molecules.

 These reactions, like all RedOx reactions, can be broken down into half reactions and examined for spontaneity.

Comproportionation!

$$Ag^{+2} + Ag_{(s)} \longrightarrow 2Ag^{+}$$

$$E^{\circ} = +1.19 V$$

SPONTANEOUS!!!

Latimer Diagrams

- Latimer Diagrams provide a quick way to assess the successive reductions of a compound.
- Organized with the most oxidized species on the <u>left</u>, each reduction, represented by an arrow, denotes the standard potential associated with the transformation.
- Disproportionation reactions are easy to spot in a Latimer diagram.

Latimer Diagrams

+1.40

$$\mathbf{E}_{1}^{\circ} + \mathbf{E}_{2}^{\circ} = \frac{\mathbf{n}_{1}\mathbf{E}_{1}^{\circ} + \mathbf{n}_{2}\mathbf{E}_{2}^{\circ}}{\mathbf{n}_{1} + \mathbf{n}_{2}}$$

Electroplating

• n = mol e-/mol product

• How many grams of silver will be plated if the cell is run at 5 amps for 1 minute?

Electroplating

• How many grams of silver will be plated if the cell is run at 5 amps for 1 minute?

```
5 amps x 60 sec = 300 C
```

- 300 C ÷ 96,500 C/mol e⁻ = 0.00311 mol e⁻
- $0.00311 \text{ mol } e^- \div 1 \text{ mol } e^-/\text{mol } Ag_{(s)} = 0.00311 \text{ mol } Ag_{(s)}$
- 0.00311 mol Ag_(s) x 107.87 g/mol =

0.335 grams

Water Reduction

$$2 H_2 O_{(1)} + 2 e - \longrightarrow H_{2(g)} + 2 O H_{(aq)}^-$$

- If the electron source is a metal, the reaction will yield H₂ gas and the metal hydroxide. This is why the first group metals are called "alkali metals."
- <u>https://youtu.be/ofNN1b7xzFw</u>

Copyright © 2005 Pearson Education, Inc. Publishing as Pea

Semiconductor Electrolyte Metal

Passivation

 A metal can react with O₂ to form a metaloxide layer that is impervious to further oxidation.

Stainless steel is iron plus at least 11% chromium. If enough chromium is added, a protective passive film will form.

